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We estimate a system of product and input-demand equations for food-processing industries to trace
the links among farm commodity prices, food-processing costs, and food prices. Disembodied tech-
nical change, which likely reflects increasing consumer demand for convenience and product variety,
has sharply reduced agricultural materials demand relative to most other food-processing inputs. This
implies weakening impacts of farm price shocks on food prices. But improving quality and falling rela-
tive prices for agricultural inputs, in combination with increasing factor substitution, has counteracted
these forces to encourage greater usage of agricultural inputs in food processing, and limit these trends.
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Food prices today often appear less responsive
to farm price shocks than in the past, a develop-
ment sometimes attributed to failures in mar-
ket institutions. However, powerful long-run
technological and social changes, leading to
adaptations in production processes and food
consumption patterns, have also altered the
demand for primary agricultural materials by
changing the structure of food-processing in-
dustries. The social shifts surrounding the ex-
panded role of women in the labor force rep-
resent one striking example of such changes.
The fraction of married women in the la-
bor force—less than one-third in 1960—rose
sharply through the next three decades be-
fore stabilizing at around 61% in the 1990s.
Such demographic shifts increased the demand
for food products requiring less home prepa-
ration time, which, in combination with en-
hanced technology, has led to more in-plant
processing of agricultural materials, and likely
a growing share of nonagricultural inputs in
food-processing costs.1
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1 MacDonald et al. offer some examples of increased processing
for meat products. Between 1982 and 1992, processors increased
frozen ground beef patty production (typically sold to fast food
chains) by 154%, and tripled output of already-cooked poultry
products. Supermarket scanner data showed 197 distinct frozen
dinner items containing meat in 1994; only 79 had been available
in 1988. Similarly, 48 frozen breakfast items with meat ingredients
were in distribution in 1994, and 49 frozen snack items, compared
to 20 and 18, respectively, in 1988.

This inference is supported by Goodwin
and Brester, who found an increased share
of value-added, and a correspondingly re-
duced share for agricultural materials, in U.S.
food-processing costs in the 1980s. A declin-
ing factor share should lead to a weaker link-
age between farm prices and food prices. But
other well-known factors also drive proces-
sors’ production choices. The business envi-
ronment, including market structure and the
regulatory framework, has undergone impor-
tant changes since the 1970s. Energy and
labor prices have risen sharply compared
to prices for agricultural commodities. Tax
changes have had impacts on relative input
prices by affecting the prices of capital inputs.
Less well-documented technical changes, asso-
ciated with capital equipment and the quality
of agricultural materials, could also have had
effects on the demand for agricultural prod-
ucts. These developments could also affect the
linkages between farm and food prices.

In this study, we measure and evaluate these
patterns for U.S. food-processing industries.
We use a cost-function representation of input
substitution resulting from technological shifts
and price changes among capital, labor, energy,
and three materials aggregates—agricultural,
food, and “other” materials. This framework
allows us to assess the roles of changes in
food product demand, input prices, and food-
processing technology on food processors’
costs, input demands, and output prices, with
a particular focus on the use of agricultural in-
puts. Our framework also facilitates considera-
tion of technological factors affecting costs and
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factor demands, such as the quasi-fixed nature
of capital, scale economies, technical change
associated with either time trends (disembod-
ied) or capital composition (embodied in cap-
ital), and agricultural innovations or market
power embodied in input prices for agricul-
tural commodities.

We find that the share of agricultural ma-
terials in processor costs fell during 1972–92,
along with the sensitivity of food prices to
farm prices. We also find that the direct effect
of disembodied technical change in food pro-
cessing has been agricultural materials-saving,
likely induced by changes in product demand.
But technological change eased substitution
among factor inputs during the period, partic-
ularly in the 1980s, leading to a more price-
elastic agricultural demand and lower rela-
tive farm prices, and muting the effects of
direct technical change on agricultural de-
mand. Moreover, we find that improved qual-
ity of agricultural materials meant that effec-
tive prices for those inputs fell even faster—
relative to other input prices—than measured
prices, inducing more substitution toward agri-
cultural materials, and further limiting the ef-
fects of changes in consumption patterns.

The Model

Our framework assumes that food processors
choose inputs to minimize costs, given input
prices and output levels faced in supply- and
demand-side markets. The cost model is speci-
fied in terms of true economic or “effective”
prices, to recognize that effective prices for
some inputs may not be equivalent to their
measured counterparts, due to imperfect mar-
kets or measurement associated with quasi-
fixities, deviations from perfect competition,
or innovation and quality changes. The result-
ing cost model is also augmented to character-
ize profit-maximizing output prices and quan-
tities, through an equality of the associated
marginal cost and marginal revenue.

More formally, the technology and cost-
minimizing behavior underlying the observed
production structure can be represented by a
total cost specification of the form TC = TC(Y,
p, r), where Y is (food) output, p is a vec-
tor of variable input prices, and r is a vector
of exogenous technological determinants. The
TC–Y relationship, summarized by the elastic-
ity of total cost with respect to output, εTC,Y =
∂lnTC/∂lnY, represents the shape of the mini-
mized long-run cost curve, given observed fac-

tor prices and the existing technological base.
Changes in components of the p and r vectors
affect this cost relationship, and thus implied
overall costs and input demands. Measures of
these cost structure patterns may thus be de-
rived in terms of first and second-order elas-
ticities with respect to these arguments of the
cost function.

Internal or external adjustment costs may,
however, sever the equivalence of the ob-
served price of input xk, pk, and its true eco-
nomic return or shadow value, p∗

k, and thus the
duality underlying the cost function. In this
case, observed costs exceed minimum possi-
ble long-run production costs. Other discrep-
ancies between the observed and effective or
shadow price, observationally equivalent to
adjustment costs, may stem from other input
market imperfections such as imperfect com-
petition in factor markets, or unmarketed (or
unmeasured) characteristics.

One way to deal with such implicit costs is to
include xk instead of pk as an argument in the
(variable) cost function, and thus represent the
shadow value wedge as ∂TC/∂xk = pk − p∗

k �=
0.2 Alternatively, the true economic, shadow,
or effective price of input xk, p∗

k = pk + �k, may
be directly incorporated into the cost function,
where �k represents the wedge between pk and
p∗

k. This approach is particularly appealing if
the cross- or interaction-terms from a model
incorporating xk as an argument seem uninfor-
mative, but an imperfect market gap, �k, seems
to exist (�k statistically deviates from zero).3 If
instead p∗

k appears well approximated by pk,
or �k ≈ 0, one can assume that rigidities or
other input market imperfections are not bind-
ing constraints on, or determinants of, mea-
sured cost structure patterns.

2 This requires defining TC(·) = VC(Y,p,r,xk) + pkxk and p∗
k =

−∂VC/∂xk, where VC is variable costs, p∗
k = pk in full long-run

equilibrium (and p∗
k is often instead denoted Zk). See Morrison

for elaboration of a more detailed representation of quasi-fixity, in-
cluding a dynamic structure explicitly capturing adjustment costs.
Others, including Paul (2000, 2001) and Bernstein (1992, 1994),
also specify fuller models of market structure and its impact on
the wedge between actual and shadow or effective price, follow-
ing Lau. The driving forces for such a wedge—fixities and mar-
ket structure—as well as the possibility of measurement error, are
proxied in our specification by a simple hedonic model allowing
for deviations in the levels and trends of effective as compared to
observed prices of MO, K, and Y. As noted by an anonymous ref-
eree, our approach may simply make the function more flexible.
But that is also true of more explicit structural models of the form
of the wedge between p∗

k and pk.
3 That is, incorporating xk directly into the cost function allows

the deviation of the shadow and market price, p∗
k − pk, to depend on

all arguments of the function if the cost function has a sufficiently
flexible functional form. However, the cross-terms in this case were
insignificant in preliminary empirical investigation, so this more
complex model was not supported.
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For our application, after preliminary inves-
tigation of estimation patterns, we adopted an
effective price framework as that most consis-
tent with our data. The total cost function for
producing output in the U.S. food-processing
sector then becomes TC = TC(Y, pv, p∗

x , r),
where pv represents the vector of observed
variable input prices for factors that satisfy
standard requirements for Shephard’s lemma
to be valid, and p∗

x is a vector of effective
prices that deviate from observed prices by
the additive factors �x.4 We found evidence of
deviations between observed and effective or
shadow prices for capital (K) and agricultural
materials (MO), but support for an assump-
tion of no such deviations for labor (L), energy
(E), and two materials inputs (food, MF; and
other, MO), with prices pL, pE, pMF, and pMO.
Demand decisions for these inputs are accord-
ingly represented by vj = ∂TC/∂pj.

The effective price of capital may be defined
as p∗

K = pK + �K, with the wedge �k poten-
tially attributable to capital rigidities (adjust-
ment costs) or unmeasured taxation or qual-
ity impacts. We tested various forms for �K to
establish their empirical justification in terms
of significance of the parameters, robustness
of the overall results, and plausibility of re-
sulting elasticities. The specification chosen is
an augmented version of an additive shift fac-
tor embodying technical change trends; �K =
�K1 + �Ktt + �K2t2, where t is a trend term
and t2 a dummy variable reflecting post-1980
structural change. This is essentially a simple
hedonic model recognizing differences in the
level and trend of quality-adjusted prices not
fully captured in measured pK, which might be
expected to arise from internal or external ad-
justment costs.

Similarly, we defined the effective agricul-
tural materials price as p∗

MA = pMA + �MA,
with �MA = �MA1 + �MAtt + �MA2t2. The ex-
istence of such a gap between pMA and p∗

MA
is plausible on several grounds. For example,
if the processing industries perceive some mar-
ket power over agricultural prices, the (higher)
marginal price, not the observed average price,
will drive agricultural input demand (�MA >
0). Alternatively, or in combination, technical
change embodied in higher quality agricultural
products could imply lower effective prices of
agricultural materials compared to their mea-
sured values (�MA < 0). With p∗

MA as an ar-

4 See Fulginiti and Perrin for a motivation and development of
a similar approach.

gument in the cost function, the sign and thus
interpretation of �MA may be established em-
pirically.5

The variables in the r vector, reflecting the
industry’s technological base, include a time
trend t representing disembodied technical
change, and an intercept dummy shift t2 cap-
turing structural shifts in the 1980s as com-
pared to the 1970s (t2 = 1 for 1982, 1987, and
1992). A capital equipment to structures ratio,
(EQ/ST = ES), is also used to represent tech-
nology embodied in the capital stock. The re-
sulting model allows both for technical change
embodied in K and MA, through the inclusion
of t and t2 in the effective price specification,
and for disembodied technical change, through
the time terms in the r vector.

Our model accommodates output supply
and pricing decisions by also permitting out-
put price to differ from marginal cost. This
extension of the cost function framework im-
poses a standard profit-maximizing condition
underlying output choice (equality of marginal
cost, MC, and marginal revenue, MR), implic-
itly assuming that downward-sloping firm de-
mand curves drive any measured gaps between
output price and marginal revenue. This is im-
plemented through the optimization equation
MR = pY + ∂pY/∂Y × Y = ∂TC/∂Y = MC, so
∂pY/∂Y × Y reflects the wedge between MR
and MC. We found ∂pY/∂Y to be well approx-
imated by a parameter, �Y, which is consistent
with a linear demand curve. So the effective
output price is p∗

Y = pY + �YY, and the re-
sulting optimization equation becomes p∗

Y =
MC, or pY = −�YY + MC. Alternative treat-
ments tried, with �Y specified as a function of
other exogenous variables, including t and t2,
caused no substantive impact on the resulting
estimated patterns.6

Based on the resulting model, consisting of
the total cost function TC = TC(p∗

MA, p∗
K, pL,

5 As pointed out by an anonymous referee, such mechanisms
may imply that p∗

MA (or p∗
K) is endogenous. That is, if �MA or

�K differ from zero due to external adjustment costs or imper-
fect competition, for example, the implied upward sloping supply
curve should be represented to fully capture all market structure
impacts on behavior. A similar argument may be made for out-
put. However, appropriately characterizing such input supply and
output demand relationships, especially for our broad range of in-
dustries, is not very feasible, so if attempted specification errors
will be embedded in the full estimated model. In addition, a vari-
ety of different forces may underlie these price deviations, rather
than just market structure.

6 �Y represents the slope of the output-demand function, so only
arguments with second-order effects (impacts on the slope as well
as just a shift impact) would appear in �Y(·). Fixed effects reflecting
industry-specific differences were also incorporated for estimation
of p∗

Y.
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pMF, pE, pMO, Y, ES, t, t2) and associated input-
demand and output-supply (pricing) optimiza-
tion equations, we can quantify and evaluate a
variety of issues raised above. In particular, we
can assess the impact of agricultural prices on
food prices, and identify the means by which
the relationship changed through time. We can
also determine the paths by which various fac-
tors drove processing costs during the time pe-
riod under consideration.

To accomplish these tasks we decompose
observed temporal total cost changes dTC/dt
into its driving forces, by quantifying the total
derivative written in terms of elasticities as

d lnTC/dt = �i εTC,pi d lnpi/dt

+ εTC,Y d lnY/dt

+ εTC,ES d lnES/dt

+ εTC,t2 dt2/dt + εTC, t

(1)

where εTC,pi are estimated cost elasticities
with respect to the various input prices,
∂lnTC/∂lnpi, and the other (analogously
defined) elasticities, denoted by ε, capture re-
sponses to changes in output and technolog-
ical factors.7 All the elasticities can be de-
rived using the estimated parameters of our
model. The associated time derivatives such as
d lnpi/dt simply reflect changes in the data be-
tween the previous and current time period (t).

By defining the individual terms of (1) as
“contributions” (C), we can rewrite (1) as

d lnTC/dt = �i CTC,pi + CTC,Y + CTC,ES

+ CTC,t2 + CTC,t

(2)

where the CTC, · measures capture the respon-
siveness (elasticity), weighted by the actual
rate of change in the exogenous variable. The
variable t2 appears even though it is a dummy
variable, although its impact is only reflected in
the time period the dummy variable becomes
one.8

Each term underlying (2) has a specific in-
terpretation as a cost driver. For example,
the scale elasticity εTC,Y captures the extent

7 The εTC,p∗k elasticities are weighted by the observed changes in
pk, since (as elaborated later) we have expanded our interpretation
of the t effect to include the indirect effect via the dp∗

k/dt trend,
so this impact is double-counted if it also appears multiplicatively
with εTC,p∗k.

8 For our analysis, therefore, the impact is captured for 1977–82
since t2 = 1 for the 1982, 1987, and 1992 time periods. Also, since
the time dimension of our data is over five-year intervals, to turn
these changes into annual averages the estimated measures are
divided by five.

of scale economies. The contribution of such
economies to observed cost changes, CTC,Y,
depends on both the elasticity, εTC,Y, and the
actual output (scale of production) change,
d lnY/dt. Similarly, the cost-contribution of an
input-price change depends both on the cost
elasticity with respect to the price, and on the
actual price change.

The other contributions represent shifts in
the cost function from external technological
and economic forces. Cost impacts of observed
adaptations toward enhanced capital equip-
ment, or embodied technical change, are mea-
sured by CTC,ES, and CTC,t (εTC,t) is typically
interpreted as disembodied technical change
that results in a downward shift of the cost re-
lationship over time, while CTC,t2 captures a
structural shift in the 1980s, as suggested by
Goodwin and Brester.

Finally, given the forms for p∗
K and p∗

MA, we
can distinguish the direct (dir) and indirect
(ind) cost impacts of technical changes, where
the indirect impact works through the effects
of t (or, analogously, t2) on �K and �MA. For
example, the implied total (tot) t impact is

εTC,t (tot) = ∂ ln TC/∂t

+ ∂lnTC
/
∂lnp∗

MA∂lnp∗
MA

/
∂t

+ ∂lnTC
/
∂lnp∗

K∂lnp∗
K

/
∂t

= εTC,t (dir) + εTC,pMA εp∗MA,t

+ εTC,pK εp∗K,t

= CTC,t (dir) + CTC,p∗MA,t

+ CTC,p∗K,t .

(3)

In addition to cost effects, we are inter-
ested in the specification and evaluation of
agricultural materials demand. The cost func-
tion model by definition represents a system
of input-demand equations (by Shephard’s
lemma, applied to the effective prices), so
MA = ∂TC/∂p∗

MA. When TC(·) is approxi-
mated by a flexible form that recognizes all
second-order relationships, this agricultural
materials demand equation depends on all cost
function arguments. Thus, the driving forces
for observed changes in agricultural materials
(MA) demand can be decomposed, similarly to
those for TC(·), as

d lnMA/dt = �i εMA,pi d lnpi/dt

+ εMA,Y d lnY/dt

+ εMA,ES d ln ES/dt

(4)
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+ εMA,t2 dt2/dt + εMA,t

= �i CMA,pi + CMA,Y + CMA,ES

+ CMA,t2 + CMA,t .

The elasticities in (4), such as εMA,pi =
∂lnMA/∂lnpi, quantify the shape of and shifts
in the MA demand curve for changes in pMA
and other arguments of the function, and the
contribution measures, CMA, reflect the actual
contributions given observed changes in these
determinants. In particular, εMA,pi indicates
the responsiveness of agricultural demand to
its own price for i = MA, and substitutabil-
ity between input vi and MA for other inputs.
Similarly, the MA-specific impacts of changes
in the scale of production or technological fac-
tors are captured by the analogously defined
εMA,Y and εMA,rn elasticities.

For example, if εMA,Y > 1 product demand
expansions imply disproportionate increases
in agricultural product demand, and scale in-
creases are MA-using. If εMA,Y > εTC,Y expan-
sions are also relatively MA-using, or biased.
If εMA,rn < 0 for rn = t2, the demand for agri-
cultural commodities was more limited, given
other economic and technological factors, in
the 1980s than in the 1970s. This suggests a
structural shift toward lower MA-intensity of
production (possibly induced by output de-
mand composition changes). εMA,t indicates
the force of disembodied technical change, or
trend, on MA demand. And if εMA,t deviates
from the overall cost change εTC,t, this is often
referred to as a technical change bias.

The total t- or t2-effect on MA demand can
also be divided into its direct and indirect
(through p∗

k) impacts, as in (3), which for t
becomes

εMA,t (tot) = εMA,t (dir) + εMA,pMA εp∗MA,t

+ εMA,pK εp∗K,t

or CMA,t (tot) = CMA,t (dir) + CMA,p∗MA,t

+ CMA,p∗K,t .

(5)

The individual components of (5) allow us
to source the effects of technical change
on agricultural materials demand. Such mea-
sured input-demand patterns in turn pro-
vide implications about the prices that agri-
cultural producers will receive for their
products.

The definition of the marginal cost of output,
MC = ∂TC/∂Y, provides a final set of second-
order relationships with useful insights. For a

flexible cost function, the MC relationship will
depend on all arguments of the total cost func-
tion, so we can decompose it as

d lnMC/dt = �i εMC,pi d lnpi/dt

+ εMC,Y d lnY/dt

+ εMC,ES d lnES/dt + εMC,t

= �i CMC,pi + CMC,Y + CMC,ES

+ CMC,t

(6)

where, for example, εMC,pi = ∂lnMC/∂lnpi.
This decomposition allows consideration of
two issues of interest, the differential impacts
of economic and technological changes on re-
turns to scale, and on the extent of market
power, in the food industries.

In particular, we can consider how pMA
changes affect marginal as compared to av-
erage cost, and thus εTC,Y = MC/AC, us-
ing the εMC,pMA and εTC,pMA elasticities. Also,
based on our output-pricing expression pY =
−�YY + MC, we can construct a decomposi-
tion of pY analogous to those presented above,
with the difference from that for MC = p∗

Y de-
pending on �Y. This may be used to evaluate
how pMA changes impact pY as compared to
MC, which provides some information on the
pass-through of agricultural materials prices to
food prices, and on the implications for markup
behavior (pY/MC).

The Data

For the empirical implementation of our
model, we required data on prices and quan-
tities of output and inputs for industries in
the U.S. food-processing sector. Our base data
were taken from the four-digit manufactur-
ing NBER (National Bureau of Economic Re-
search) productivity database, which is often
used as a foundation for production struc-
ture studies, such as Griliches and Lichtenberg;
Bartlesman, Caballero, and Lyons; and Fixler
and Siegel.

We also, however, needed to distinguish
cost shares for three materials aggregates—
agricultural materials, food materials (shipped
among food-processing establishments), and
other materials. We used Census of Manu-
factures data to calculate the share of each
materials aggregate in the industry value of
shipments for which cost information is avail-
able, and adjusted the published data in two
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ways.9 First, we subtracted re-sales (purchased
materials that are not processed before being
resold, which are important in some industries)
from the value of shipments, to better capture
manufacturing output. Second, some small es-
tablishments do not separately report individ-
ual materials purchases, but instead report all
materials in an “n.s.k.” (not separately classi-
fied) category. We allocated n.s.k. shipments
to agricultural, food, and other materials cat-
egories in proportions equivalent to those re-
ported by the larger institutions.

Materials input-price series were con-
structed primarily from commodity producer
price indexes (PPIs) from the Bureau of La-
bor Statistics. In cases where an industry con-
sumed several specific agricultural or food ma-
terials, an aggregated materials price index was
constructed from the constituent materials in-
dexes, with each price index weighted by its
expenditure share in the Census aggregate.
In the few cases where PPI indexes were not
available, we constructed indexes from aver-
age price series maintained by USDA’s Na-
tional Agricultural Statistics Service. The re-
sulting data panel covers five-year intervals
from 1972 through 1992, for 34 consistently de-
fined four-digit SIC industries in the U.S. food-
processing sector (SIC 20).

Empirical Implementation

Estimation of our model also required more
explicit specification of the cost function
and the resulting system of estimating equa-
tions. We used a version of the generalized
Leontief (GL) cost function, called a GL-
quadratic (GL-Q) by Paul (2000), which takes
the form

TC(Y, p, r) = � j�I �j I p j DUMI3

+ � j�I �jYI p j DUMI4Y

+ �k�I �k I p∗
k DUMI3

+ �k�I �kYI p∗
k DUMI4Y + �j�i � j i p.5

j p.5
i

+ � j�k� jk p.5
j p∗.5

k + �k�l�kl p.5
k p.5

l

+ �k�kY p∗
kY + �k�n�kn p∗

k rn

+ �k p∗
k

(
�YYY 2 + �n�YnrnY

(7)

9 Establishments are required to report consumption of ma-
jor materials that are important components of production costs,
where important is defined as expenditures exceeding a particular
value—usually $10,000.

+ �m�n�mnrmrn
) + � j �jY p j Y

+ � j�n�jn p jrn + � j p j
(
�YYY 2

+ �n�YnrnY + �m�n�mnrmrn
)

where I denotes industry, and DUMI3,
DUMI4 represent three- and four-digit indus-
try dummy variables. The model thus pools the
industry data, but includes fixed industry ef-
fects, incorporated in such a manner that linear
homogeneity in input prices is maintained.10

For example, the first term in (7) represents a
sum across input price and industry dummies,
so that each input equation includes industry
fixed effects. Also, although input prices are
conditioned on three-digit industry dummies,
output is conditioned on four-digit dummies,
because the greater industry detail provided
by four-digit fixed effects was not significant
for the input-demand equations, but was for
the output-pricing equation and cross price-
output industry effects.11

The final estimating model is comprised of a
system of demand equations for the inputs (L,
K, E, MA, MF, MO), and a pricing equation for
output. As alluded to above, the input-demand
equations are constructed according to
Shephard’s lemma; vj(·) = ∂TC(·)/∂pj (j = L,
E, MF, MO) and xk(·) = ∂TC(·)/∂p∗

k (k = MA,
K), where p∗

k = pk + �k, and �k = �k1 + �ktt
+ �k2t2. Also, for the output-pricing equation
pY = −�YY + ∂TC/∂Y, derived from equating
MR and MC, �Y was differentiated across
industries to incorporate fixed effects into this
relationship; �Y = �I�YIDI4.

Estimation was carried out by seemingly un-
related (SUR) regression, with the potential
for heteroskedasticity accommodated by tech-
niques in TSP that allow standard errors to be
computed from a heteroskedastic-consistent

10 As pointed out by an anonymous referee, pooling the data
in this manner may not be fully justifiable due to heterogeneity
across industries (although it seems clearly preferable to aggrega-
tion across the industries). In preliminary empirical investigation,
however, we found both that additional fixed effects were insignif-
icant for the input demand equations, and that adding more in-
teraction terms to allow further distinction between industries did
not tend to change the results substantively, yet increased overall
insignificance. We also could not incorporate a full range of such
interaction terms, or estimate the industries separately, due to lack
of df. Since including interaction terms would thus be of limited
usefulness, we chose to remain with the simpler and more robust
fixed effects specification.

11 For example, dairy products is a three-digit industry class, which
consists of four-digit industries such as fluid milk processing, cheese
manufacturing, butter manufacturing, or ice cream, and frozen
desserts. The inclusion of fixed effects means that our other co-
efficients, and the elasticity measures, should be interpreted as
“within” estimates; they are relative to industry-specific means and
thus reflect intra-industry variation.
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matrix (Robust–White). An alternative ap-
proach to heteroskedasticity adjustment—to
reconstruct the equations as input/output in-
stead of input demand equations—was also
tried in empirical estimation, but did not im-
prove the estimates.

Although instrumental variables (IV) pro-
cedures such as three-stage least squares are
often used in the literature on which this study
is based, to accommodate potential endogene-
ity or measurement errors in the data, we
did not rely on them for a variety of reasons.
First, IV techniques frequently require an arbi-
trary specification of instruments, which can be
problematic. In addition, models of this form
are typically estimated with time series data,
and often use lagged values of the observed
arguments of the function as instruments. But
this is not conceptually or empirically appeal-
ing for our application due to the short time se-
ries, as well as the five-year gaps between data
points. Preliminary investigation was carried
out to determine the sensitivity of the results
to some IV specifications, but the results from
these specifications were individually more
volatile (less robust) and not as plausible as
those from a basic SUR model. Because on bal-
ance the emerging story from the results was
consistent with SUR estimates, we thus relied
on SUR techniques for the final estimation.

Results

Appendix table A.1 displays the estimated pa-
rameters for our model (dummy terms are not
included in the table since there are too many
to be illuminating, but they are primarily sta-
tistically significant). The overall explanatory
power of the model is indicated by the high
R2’s for the estimating equations provided in
appendix table A.2, including the total cost
equation, which was not estimated but was fit-
ted to determine the implied R2. Many param-
eter estimates that are not individually statisti-
cally significant are jointly significant, such as
the ES parameters mentioned above.12 And
the story emerging from the final model was
robust to a variety of alternative specifications
tried to evaluate sensitivity.13

12 One significance issue worth specific mention is that neither
the �MA1 or �MA2 estimate in the final specification reach statistical
significance at the 5% level. This was primarily due to insignificance
of the level shift factor, �MA1, since if this is set to zero �MA2 is
significant. However, the measured elasticities varied negligibly
with this adaptation, so to retain symmetry of the virtual price
treatments we retained both parameters in the specification.

13 We tried various alternative IV treatments, although as sug-
gested in the text the specification of instruments for these treat-

Table 1. Total Cost Elasticities and
Contributions

ln
 εTC,i CTC,i

Input prices
Agricultural 0.0547 0.2497∗ 0.0137

materials
Food materials 0.0403 0.1031∗ 0.0042
Other materials 0.0653 0.1293∗ 0.0084
Labor 0.0908 0.0836∗ 0.0076
Capital 0.0680 0.4213∗ 0.0287
Energy 0.1186 0.0130∗ 0.0015
Output 0.0218 0.8677∗ 0.0191

Technical change
Equipment and 0.0200 −0.0176 −0.0008

structures
t −0.0354∗ 0.0004
t2 0.0187∗ −0.0141

Sum 0.0824

Note: The first column (ln
) capture annual average log differences, or
growth rates, in the explanatory variables. Contributions (C) are elasticities
times growth. All estimates are derived from parameters reported in
appendix table 2. Asterisks denote 95% statistical significance.

Parameter estimates were used to con-
struct the elasticity and contribution measures
overviewed above, which were averaged across
the whole sample, and separately for 1972–82
and 1982–92, to distinguish temporal patterns.
The elasticity estimates were constructed by
computing the indicators for each data point
and then averaging across the sample under
consideration. Statistical significance of these
measures (since they involve combinations of
parameters) was imputed by evaluating the
elasticity estimates for the averaged data; val-
ues significantly different from zero at the 5%
level are indicated by an asterisk.14 In most
cases, the significance implications were not
data-dependent, although for some estimates
the data point at which the measure was eval-
uated contributed to evidence of significance.

Total Cost Drivers

Consider first the elasticity and contribution
measures presented in table 1 for total costs.
The cost elasticity most directly associated with
agricultural materials use, εTC,pMA, reflects the
cost share of agricultural materials. The esti-
mated average value, 0.25, indicates that ris-
ing pMA has a substantive positive impact on

ments is arbitrary, and the results varied depending on the choice of
instruments. Since the SUR estimates were less volatile, less arbi-
trary, and represented overall patterns effectively, these estimates
were chosen for our final specification.

14 We used the ANALYZ command in PC-TSP to construct these
estimates, which required evaluating the significance for a single
data point. We alternatively constructed t-statistics for the elastic-
ities for individual observations and for averaged data.
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Table 2. Temporal Total Cost Decompositions

ln
 εTC,i CTC,i ln
 εTC,i CTC,i>

1972–82 1982–92Input prices
Agricultural materials 0.1021 0.2734∗ 0.0279 0.0080 0.2263∗ 0.0018
Food materials 0.0687 0.1096∗ 0.0075 0.0123 0.0967∗ 0.0012
Other materials 0.1048 0.1382∗ 0.0145 0.0264 0.1206∗ 0.0032
Labor 0.1334 0.0951∗ 0.0127 0.0489 0.0723∗ 0.0035
Capital 0.1076 0.3715∗ 0.0400 0.0291 0.4703∗ 0.0137
Energy 0.2410 0.0122∗ 0.0030 −0.0019 0.0138∗ 0.0000
Output 0.0266 0.8677∗ 0.0191 0.0170 0.8871∗ 0.0150

Technical change
Equipment and structures 0.0244 −0.0189 −0.0238 0.0156 −0.0592 −0.0009
t 0.0020∗ 0.0004 0.0388∗ 0.0077
t2 −0.2530∗ −0.0123 −0.5203∗ 0.0000

Sum 0.0890 0.0417

Note: See table 1.

production costs, and thus strongly affects
food-processing output and price. Note, how-
ever, that the overall contribution of agricul-
tural prices to total cost increases, 1.4% per
year over 1972–92, is much smaller than that
for capital.

The εTC,Y estimate of 0.868 implies signif-
icantly increasing returns to scale, a result
largely driven by a very small capital-output
elasticity. Scale expansions instead seem agri-
cultural materials-using, although this conclu-
sion is closely linked to the inclusion of t in
the �K and �MA specifications. When t is not
included as an argument in these specifica-
tions, output increases instead appear MA-
saving (εMA,Y is significantly smaller than 1),
and the εK,Y and εTC,Y estimates are much
closer to 1, more closely approximating con-
stant returns to scale overall.

Table 2 reports elasticity and contribution
measures for two periods— 1972–82 and 1982–
92. Note that the share of agricultural materials
in total costs fell noticeably over time, from
0.273 to 0.226. The declining elasticity, com-
bined with factor price inflation of less than 1%
per year, meant that agricultural materials had
virtually no contribution to the observed total
cost increases of 4.17% per year in food pro-
cessing in 1982–92. By contrast, the growing
cost share of capital, along with factor price in-
creases, led to a continued impact on increased
processing costs. Moreover, the scale elasticity
changed little between the 1970s and 1980s;
continued modest demand growth therefore
led to dampened effects on total costs.

Patterns of Agricultural Materials Demand

The drivers of agricultural materials (MA) de-
mand may also be examined using the mea-

Table 3. The Demand for Agricultural
Materials

ln
 εMA,i CMA,i

Input prices
Agricultural 0.0547 −1.1375∗ −0.0622

materials
Food materials 0.0403 0.0868 0.0035
Other materials 0.0653 0.2399∗ 0.0157
Labor 0.0908 0.1306 0.0119
Capital 0.0680 0.6490∗ 0.0441
Energy 0.1186 0.0312∗ 0.0037
Output 0.0218 1.0946∗ 0.0238

Technical change
Equipment and 0.0200 0.7159 0.0143

structures
t −0.0390∗ −0.0078
t2 −0.4248∗ −0.0207

Sum 0.0439

Note: See table 1.

sures reported in table 3, as specified in equa-
tion (4). The own price elasticity, εMA,pMA =
−1.138, implies that MA demand is fairly elas-
tic. Own price increases (holding other factors
constant) lead to disproportionately lower MA
demand. Based on observed pMA trends, own
prices thus provided a negative contribution
of CMA,pMA = −0.062 (6.2% per year) to the
overall observed increase in MA use of 0.038
(or 3.8% per year); other factors outweighed
the negative own-demand effect.15

15 These contributions were computed by multiplying the aver-
aged elasticity and price change measures, rather than averaging
the multiplied measures. Although most measure differ little across
these two possible methods, the CMA,pMA and CMA,Y contributions
do appear larger this way than they do when the contributions are
first computed and then averaged (−0.62 as compared to −0.44 for
the former, and 0.24 versus −0.17 for the latter).
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Table 4. Temporal Decomposition of the Demand for Agricultural Materials

ln
 εMA,i CMA,i ln
 εMA,i CMA,i

1972–82 1982–92Input prices
Agricultural materials 0.1021 −0.9731∗ −0.0994 0.0080 −1.2992∗ −0.0104
Food materials 0.0687 0.0791 0.0054 0.0123 0.0943 0.0012
Other materials 0.1048 0.2094∗ 0.0219 0.0264 0.2699∗ 0.0071
Labor 0.1334 0.1082 0.0144 0.0489 0.1527 0.0075
Capital 0.1076 0.5484∗ 0.0590 0.0291 0.7479∗ 0.0217
Energy 0.2410 0.0281∗ 0.0068 −0.0019 0.0343∗ −0.0001
Output 0.0266 1.0452∗ 0.0278 0.0170 1.1433∗ 0.0194

Technical change
Equipment and structures 0.0244 0.7008 0.0171 0.0156 0.7307 0.0114
t −0.1174∗ −0.0235 0.0381∗ 0.0076
t2 −0.0608∗ −0.0060 −0.7828∗ 0.0000

Sum 0.0302 0.0573

Note: See table 1.

All other inputs are substitutable with
MA, as is apparent from their positive price
elasticities, and the observed increases in
these input prices over the sample period thus
imply positive shift effects on MA demand
that in sum more than compensate for the
own price effect. In particular, MA seems
somewhat substitutable with both MF and
MO, but the contributions of pMF and pMO
changes (0.0035 and 0.016, respectively) are
not substantial since the price changes have
been small. Labor and energy prices rose
more, but their contributions to MA use
(0.012 and 0.004, respectively) were limited
by smaller substitution elasticities.

The contribution of increased capital prices
to agricultural materials demand is much
greater than the price effects associated with
other inputs (CMA,pK = 0.044). If weighted
by p∗

K, which rose more rapidly than pK, the
contribution is even greater, at 0.056. Output
growth also had a more than proportional ef-
fect on MA demand; the elasticity of 1.095,
evaluated at observed demand growth lev-
els, implies an output demand contribution
(CMA,Y) of 0.024.16

Table 4 reports a temporal decomposition of
agricultural demand, similarly to that in table 2
for costs. Note that the own price elasticity of
demand for agricultural materials became con-
siderably greater as time passed—from –0.97
in 1972–82 to –1.30 in 1982–92 (which, with a
standard error of 0.05, is a statistically signifi-
cant difference). In turn, all cross-price elastic-

16 The test of significance for this measure compares to one rather
than zero.

ities increased in the later from the former pe-
riod, and the pattern suggests technical change
that allows for easier substitution among in-
puts. The measures in table 4 also show that
output expansion became more intensive in
the use of agricultural materials in the 1980s,
as the εMA,Y elasticity increased to 1.143 from
1.045. But as output growth slowed, the con-
tribution of output growth to agricultural de-
mand growth also slowed.

Technical Change and Agricultural
Materials Use

Our model allows for three sources of technical
change. It directly captures effects embodied in
new investment in equipment and structures
through ES. Equations (2) for total cost, and
(5) for agricultural materials demand, capture
the other sources. That is, the direct effects of
disembodied technical change are reflected by
a time trend that shifts the cost function. And
technical change operating through effective
prices for labor and capital is accommodated
by allowing the gaps between the effective and
observed prices to vary over time. In addition,
the shift terms and decompositions represent
time differences in the impacts of technical
change.

First, our inclusion of ES as a cost-
determinant in addition to the standard time
trend t, to capture technical change embed-
ded in new equipment and structures, seemed
important in preliminary empirical investiga-
tion for explaining cost- and input-demand
patterns. The ES parameters, interpreted as
the impact of technical change embodied in
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Table 5. Disembodied Technical Change: Direct and Indirect Effects

CMA,t(tot) = CMA,t(dir) + CMA,p∗MA,t + CMA,p∗K,t

Agricultural materials
Full sample, t −0.0078∗ −0.0525∗ 0.0284∗ 0.0166∗

1972–82, t −0.0235∗ −0.0632∗ 0.0222∗ 0.0174∗

1982–92, t 0.0076∗ −0.0420∗ 0.0353∗ 0.0147∗

Full sample, t2 −0.0207∗ −0.0126∗ −0.0041∗ −0.0039∗

1972–82, t2 −0.0006∗ −0.0126∗ −0.0054∗ −0.0060∗

Total cost
Full sample, t 0.0004∗ −0.0042∗ −0.0062∗ 0.0108∗

1972–82, t −0.0071∗ −0.0126∗ −0.0062∗ 0.0118∗

1982–92, t 0.0078∗ 0.0041∗ −0.0061∗ 0.0092∗

Full sample, t2 −0.0141∗ −0.0123∗ 0.0009∗ −0.0025∗

1972–82, t2 −0.0052∗ −0.0026∗ 0.0011∗ −0.0036∗

Note: The total contribution (CMA,t(tot)) is the sum of the three direct and indirect terms. Asterisks denote 95% statistical significance.

the capital stock, tended to be significant
and plausible. When t2 was also included to
represent the potential impact of structural
changes in the 1980s, the t2 parameters be-
came statistically significant but the ES pa-
rameters lost significance. The ES parame-
ters remained jointly statistically significant,
however, so they were retained in the final
specification. Both variables thus seem to re-
flect changes in the 1980s—perhaps toward
greater capital- or high-tech-intensity of pro-
duction. And escalation of the ES ratio seems
to have had a positive (but statistically in-
significant) impact on agricultural materials
demand; CMA,ES = 0.011.

Second, we may consider the direct and in-
direct effects of disembodied technical change
on MA demand, as summarized in table 5.
The overall impact is represented by the con-
tribution CMA,t(tot), which is −0.008 on aver-
age. The trend in this contribution is also sub-
stantively and statistically relevant; the εMA,t
(tot) estimates are significantly different from
zero for most individual observations, and the
trend was augmented post-1980 (CMA,t2(tot) =
−0.021). Aggregated over time, the estimates
suggest a 17% decline in agricultural demand,
holding food demand constant, over the full
period.

The direct impacts exhibit a much greater
magnitude than the total or overall measures,
however, since large proportions of the di-
rect effects are counteracted by effective price
trends that may be interpreted as embodied
technical change or adjustment costs. These
patterns can be seen from the decomposi-
tions of direct and indirect impacts in table 5,
that arise from the inclusion of t-terms in the
p∗

MA and p∗
K (�MA and �K) specifications, as in

equation (5).

In particular, the direct effect, CMA,t(dir), cap-
tures the temporal shift in the MA demand
curve, holding output and factor prices fixed.
This effect is quite large; agricultural demand
not accounted for by other factors falls by
5.25% per year, with a greater decrease in the
1972–82 than the 1982–92 period. The direct
disembodied effects on costs are much more
modest −0.42% per year—with a larger rate
of decline in the 1970s. This is very consistent
with most other studies of food-processing pro-
ductivity, including Heien; Gopinath, Roe, and
Shane; and Morrison; as well as with more gen-
eral studies of productivity patterns across in-
dustries, such as Jorgenson and Stiroh.

These large direct effects are offset by two
indirect effects, operating through changes
in effective agricultural materials and capi-
tal prices. The effective price p∗

MA rose by
only 3.6% per year as compared to the pMA
growth of 5.5% per year. This lower growth
in p∗

MA could derive from various factors—
including augmented quality that is not cap-
tured in the measured values—but is incon-
sistent with increases in market (monopsony)
power.17 Thus, it appears that �MA may reflect
technical change or productivity embodied in
agricultural materials, representing the impact
of technical innovation in agricultural markets
transferred to the next level of the food chain–
food processing.18

17 Monopsony power is not evident overall for these markets,
unless it is counteracted by quality changes, because it is generally
(and on average) the case that p∗

MA < pMA rather than the reverse.
18 From the point of view of processors, quality changes could in-

clude shifts toward more consistent and uniform livestock shapes
that allow for lower cost processing, or from development of crop
varieties better suited to modern processing practices. Quality
changes could also stem from developments occurring between
the farm gate and the processing plant, such as improvements in



Morrison Paul and MacDonald Agricultural Prices and Food Costs 643

By contrast, effective capital prices grew
faster than their measured values. Factors driv-
ing this trend could include substantive and
rising adjustment costs (perhaps from larger
scale and more high-tech production resulting
in greater production rigidities), environmen-
tal or safety standards, or taxes, that are not ef-
fectively captured in the measured user cost of
capital. These trends in capital costs motivate a
substitution effect toward primary agricultural
products.

Because the full trend impact on agricultural
materials demand is the sum of terms involv-
ing the direct- and indirect-t-effects exhibited
through the trend in p∗

k, and the trend compo-
nent of p∗

MA is negative (εp∗MA,t = −0.125), for
our scenario εMA,pMA < 0. However, the in-
direct p∗

MA effect on MA use is positive—as is
the p∗

K effect because K is a substitute but p∗
K is

rising (εp∗K,t = 0.128). Thus each of these com-
ponents partially counteracts the large direct
t-impact of –0.0525. This evidence is consistent
with the embodied technical change interpre-
tation of the t-impacts on effective prices im-
plied by our comparison of p∗

MA and p∗
K to pMA

and pK changes. Declines in effective relative
to measured pMA, and the reverse for pK, each
augment MA use.

Note also that the input-specific measure
CMA,t(dir) = −0.0525 is much larger than the as-
sociated overall (total cost) input declines cap-
tured by CTC,t(dir) = −0.004. And that the total
MA effect, CMA,t(tot), is negative whereas that
for TC, CTC,t(tot), is positive, indicating that
“technical change” has been both relatively
and absolutely MA-input-saving. Over time
there has been a technical change bias toward
reducing agricultural materials use more than
other inputs for a given level of output.

Finally, the effective price p∗
MA actually

trends down after 1980, so the full contribu-
tion of own price changes to agricultural de-
mand is positive—a tendency that is partic-
ularly worth highlighting because measured
agricultural prices continued to fall after our
sample period. It also appears that although
agricultural demand growth in the 1980s ex-
ceeded that in the 1970s, the individual input-
price contributions of output and input prices
to that growth were generally smaller. In fact,
a large proportion of agricultural demand ex-
pansion seems to have arisen from technical

transportation, storage, cleaning, and sorting that narrow the gap
between the plant level cost of an input and the farm gate price.
The PPIs that provide the basis for our market price measures are
measured at the farm, not the plant.

effects. In particular, the indirect p∗
MA effect

has increased over time to the point where
CMA,t(tot) is positive post-1980, although the di-
rect impact, CMA,t(dir), reported in table 2, re-
mains negative (but smaller) in the later time
period.

Effects of Agricultural Price Changes
on Marginal Costs, Average Costs,
and Food Prices

We may also consider the pass-through of agri-
cultural prices, using the estimates presented in
table 6 for the elasticity and contribution mea-
sures relating to marginal cost and food prices.
Input-price effects for materials and labor in-
puts are slightly larger for marginal than for to-
tal (and thus average, given Y) cost, implying a
depressing impact on scale economies (MC in-
creases more than AC with higher input prices,
so their ratio rises). The reverse is true, how-
ever, for the pK and pE elasticities, supporting
the notion that capital is subject to adjustment
costs and “lumpiness” that are driving forces
for returns to scale. This observation is also
consistent with the virtually nonexistent MC
impacts of changing output.

Table 7 reports elasticities for food prices,
marginal processor costs, and total (average)
processor costs for a 1% change in agricultural
prices. First, comparisons of food prices and
marginal costs provide insights about markups
and their determinants. A 1% increase in agri-
cultural prices increases food prices by pro-
portionately more than average costs, and
marginal more than average costs—0.272,
compared to 0.253, and 0.250, respectively. In
turn, rising agricultural prices drive slightly
higher markups (pY/MC). The elasticity mea-
sures also changed substantively over time. In
particular, the food price elasticity fell sharply,
from 0.308 in 1972–82 to 0.237 in the later pe-
riod, and moved closer to the cost elasticities.

Conclusions

Our analysis investigates an often-raised and
widely discussed trend that has generated sig-
nificant concern about agricultural markets.
Steady changes toward more highly processed
food products have been observed for many
years, and the connections among those trends
and fundamental changes in household demo-
graphics and lifestyle choices have been exten-
sively documented. It is easy to see the key
implications of such developments for agri-
culture; descriptive data alone would show
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Table 6. Marginal Cost and Price Elasticities and Contributions

ln
 εMC,i CMC,i εPY,i CPY,i

Input prices
Agricultural materials 0.0547 0.2533 0.0139 0.2725 0.0149
Food materials 0.0403 0.2080 0.0084 0.2131 0.0086
Other materials 0.0653 0.1938 0.0127 0.2078 0.0136
Labor 0.0908 0.1611 0.0146 0.1732 0.0157
Capital 0.0680 0.1773 0.0121 0.1887 0.0128
Energy 0.1186 0.0065 0.0008 0.0086 0.0010
Output 0.0218 −0.0157 −0.0003 −.0776 −0.0017

Technical change
Equipment and structures 0.0200 0.0328 0.0007 0.0340 0.0007
t 0.0100 −0.0139 −0.0028 −0.0149 −0.0030
t2 −0.0042 −0.0002 −0.0042 −0.0002

Sum 0.0634 0.0654

Note: See table 1. Here, each contribution (C) is the product of the growth rate in the first column and the relevant elasticity.

Table 7. Impacts of a 1% Agricultural Price
Increase on Food Processing

Full Sample 1972–82 1982–92

Percentage change
Total cost 0.250∗ 0.273∗ 0.226∗

Marginal 0.253∗ 0.287∗ 0.220∗

cost
Output price 0.272∗ 0.308∗ 0.237∗

Ag input −1.137∗ −0.973∗ −1.299∗

quantity

Note: See table 1.

that the share of agricultural materials inputs
in food-processing shipments fell over time,
in amounts close to the values presented in
table 2. By inference, the linkage between agri-
cultural and food prices should also have weak-
ened in accordance with the trend change in
factor shares.

A more detailed analysis of these patterns
can be developed, however, by characteriz-
ing a more complete model of the network of
factors driving demand for agricultural com-
modities in food processing. In this study,
such an approach has yielded insights about
several less widely understood—particularly
quantitatively—factors affecting the demand
for agricultural products.

First, in line with earlier findings by
Goodwin and Brester, we find that processors’
demand for agricultural commodities is price
sensitive, and has become more elastic over
time. Along with falling relative prices for agri-
cultural inputs, this has led to substitution to-
ward agricultural inputs, and away from labor
and capital. Second, we find that the demand

for agricultural materials is slightly scale in-
tensive; increases in industry demand for food
products lead to more than proportionate in-
creases in agricultural input demand. Thus,
modest continuing food industry growth has
led to a slight intensification of agricultural de-
mand growth. And third, we find that some
forms of technical change have intensified
agricultural input demand. Effective agricul-
tural prices have dropped relative to observed
prices, a trend that is likely driven by qual-
ity improvements in agricultural commodities
and in the marketing system, and in our model
leads to more substitution toward agricultural
materials. Moreover, effective capital prices
have risen relative to observed, possibly due to
growing adjustment costs, or tax, regulatory, or
environmental wedges, which reinforces sub-
stitution toward agricultural inputs.

Conversely, the direct impact of technical
change (t) has been large and negative, and
only partly counteracted by the positive tech-
nological impacts embodied in the effective
MA and K prices. The implied drop in pri-
mary agricultural product demand has also
been stronger than the overall cost diminu-
tion effect, which implies a relative MA-input-
saving bias. The 1982–92 (t2) structural change
impact also suggests that this trend is intensify-
ing, and is being further exacerbated by dimin-
ishing effective price (p∗

MA and p∗
K) changes.

In sum, the effect of changes in consumer
preferences on agricultural input demand ap-
pears to have been much greater than de-
scriptive statistics suggest, since the descrip-
tive measures co-mingle all of the above
forces. Overall, the measured share of primary
agricultural materials in total costs has been
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dropping, so the contribution of MA price in-
creases to cost changes has fallen over time. As
a result, the link between MA demand and food
prices has clearly weakened, and this trend is
likely to continue into the future.

[Received January 2002;
accepted February 2003.]

References

Bartelsman, E.J., R.J. Caballero, and R.K. Lyons.
“Customer- and Supplier-Driven Externali-
ties.” American Economic Review 84(1994):
1075–84.

Bernstein, J.I. “Price Merging and Capital Adjust-
ment: Canadian Mill Products and Pulp and Pa-
per Industries.” International Journal of Indus-
trial Organization 10(1992):491–510.

——. “Exports, Margins, and Productivity Growth:
With an Application to the Canadian Softwood
Lumber Industry.” Review of Economics and
Statistics 76(1994):291–301.

Fixler, D.J., and D. Siegel. “Outsourcing and
Productivity Growth in Services.” Structural
Change and Economic Dynamics 10(1999):
177–94.

Fulginiti, L., and R. Perrin. “Prices and Productiv-
ity in Agriculture.” Review of Economics and
Statistics 75(1993):471–82.

Goodwin, B.K., and G.W. Brester. “Structural
Change in Factor Demand Relationships in
the U.S. Food and Kindred Products Industry.”
American Journal of Agricultural Economics
77(1995):69–79.

Gopinath, M., T.L. Roe, and M.D. Shane. “Com-
petitiveness of U.S. Food Processing: Benefits

Table A.1. Parameter Estimates from GL-Q Model

Parameter Estimate t-statistic Parameter Estimate t-statistic

�MA1 0.0951 1.53 �MAT −0.1887 −2.54
�MA2 0.0712 1.56 �MAT2 0.4743 2.62
�MAt −0.0906 −5.31 �MAES 0.1488 0.66
�K1 −0.1089 −1.24 �L 0.1524 0.62
�K2 −0.2256 −3.74 �LY 0.0822 11.24
�Kt 0.1536 4.79 �LMF −0.1789 −2.11
�E −0.0522 −1.11 �LMO 0.4867 2.72
�EY 0.0147 2.23 �LK −0.1017 −0.53
�LE −0.0228 −0.82 �LT −0.1230 −4.63
�EMA 0.0226 1.86 �LT2 0.3691 4.59
�EMF −0.0002 −0.02 �LES −0.1718 −1.89
�EMO −0.0581 −1.19 �MF −0.6892 −2.29
�EK 0.1208 2.35 �MFD 0.1298 0.72
�ET −0.0791 −4.80 �MFY 0.0889 9.85

(Continued)

from Primary Agriculture.” American Journal
of Agricultural Economics 78(1996):1044–55.

Griliches, Z., and F.R. Lichtenberg. “Interindustry
Technology Flows and Productivity Growth:
A Reexamination?” Review of Economics and
Statistics 66(1984):324–29.

Heien, D.M. “Productivity in U.S. Food Processing
and Distribution.” American Journal of Agri-
cultural Economics 65(1983):297–302.

Jorgenson, D.W., and K. Stiroh. “Raising the Speed
Limit: U.S. Economic Growth in the Informa-
tion Age.” Brookings Papers on Economic Ac-
tivity 0(2000):125–211.

Lau, L. “On Identifying the Degree of Competitive-
ness from Industry Price and Output Data.”
Economic Letters 10(1982):93–99.

MacDonald, J.M., M.E. Ollinger, K.E. Nelson, and
C.R. Handy. “Structural Change in Meat In-
dustries: Implications for Food Safety Regula-
tion.” American Journal of Agricultural Eco-
nomics 78(1996): 780–85.

Morrison, C.J. “Primal and Dual Measures of Eco-
nomic Capacity Utilization: An Application to
Productivity Measurement in the U.S. Auto-
mobile Industry.” Journal of Business and Eco-
nomic Statistics 3(1985):312–24.

——. “Structural Change, Capital Investment and
Productivity in the Food Processing Industry.”
American Journal of Agricultural Economics
79(1997):110–25.

Paul, C.J.M. Cost Economies and Market Power
in U.S. Meat Packing. Giannini Foundation
Monograph No. 44, May 2000.

——. “Market and Cost Structure in the U.S. Beef
Packing Industry: A Plant-Level Analysis.”
American Journal of Agricultural Economics
83(2001):64–76.

Appendix



646 August 2003 Amer. J. Agr. Econ.

Table A.1. (Continued)

Parameter Estimate t-statistic Parameter Estimate t-statistic

�ET2 0.4020 6.39 �MFMO −0.0537 −0.44
�EES 0.0294 0.70 �MFK 0.2563 1.93
�YT −0.0006 −3.87 �MFT −0.0896 −2.42
�YT2 0.0001 0.33 �MFT2 0.4720 4.85
�YES 0.0018 1.21 �MFES −0.1769 −1.30
�TES −0.0028 −0.96 �MO −0.4973 −1.17
�T2ES 0.0018 −0.24 �MOY 0.0471 5.90
�TT2 −0.0748 −6.59 �MOK 0.0249 0.06
�YY −0.0002 −1.37 �MOT −0.1108 −2.95
�TT 0.0305 7.32 �MOT2 0.4105 4.12
�ESES 0.0118 0.84 �MOES −0.4599 −3.88
�MA 0.5887 1.12 �K −1.4212 −2.64
�MAY 0.7710 56.13 �KY 0.1643 19.01
�LMA 0.0824 0.98 �KT −0.0373 −0.86
�MAMF 0.0574 0.39 �KT2 0.4104 3.45
�MAMO 0.0137 0.11 �KES 0.3393 2.56
�MAK 0.3775 2.84 �Y −0.0008 −0.54

Table A.2. R2 Coefficients from GL-Q Model

Equation R2

TC 0.976
MA 0.993
MF 0.946
MO 0.954
L 0.946
E 0.948
K 0.979
PY 0.976


